【亿欧智库】2023中国AIGC商业潜力研究报告【发现报告 fxbaogao.com】.pdf
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 亿欧智库 发现报告 fxbaogao.com 【亿欧智库】2023中国AIGC商业潜力研究报告【发现报告 fxbaogao.com】 202
- 资源描述:
-
1、2023中国AIGC商业潜力研究报告亿欧智库 https:/ reserved to EO Intelligence,July 2023前言在人工智能发展的漫长历程中,如何让机器学会创作一直被视为难以逾越的天堑,“创造力”也因此被视为人类与机器最本质的区别之一。然而,人类的创造力也终将赋予机器创造力,把世界送入智能创作的新时代。从机器学习到智能创造,从PGC,UGC到AIGC,我们即将见证一场深刻的生产力变革,而这份变革也会影响到我们工作与生活的方方面面。本报告将向所有关注未来科技的相关机构、从业者、创业者、投资人传递亿欧对AIGC的市场潜力场景的洞察和优秀企业案例。AI跨入生成式阶段 预学习
2、引发AI技术质变,摆脱过去AI的高门槛、训练成本高、生成内容单一的痛点。基于大模型的泛化能力,知识蒸馏与微调后进入专用领域的应用,覆盖短头、长尾的场景。多模态打破多种信息之间的边界,提升AIGC内容多样性与技术多样性,拓宽应用的场景。原因1原因2原因3 中国生成式AI与国外先进水平存在一定差距,但凭借国内应用场景的多样性,具备AIGC的数据积累优势,有望追上先进步伐。中外差距 AIGC大模型生态圈解析 短期内,扩大算力是AIGC的刚需。FPGA及ASIC有望在远期成为主力AI芯片。算力成本为大模型成本65%算力为大模型能力的下限 为防止中国大模型出现“数据马太效应”,大模型亟需高质量的标注数据
3、进行训练,提高生成能力。数据为大模型能力的上限 目前大模型以服务B端为主,其中平台服务模式的占比相对较高高质量的算法使大模型能力贴近上限数据成本为大模型成本23%算法成本为大模型成本12%亿欧智库:基础原子能力潜力指数亿欧智库:多模态原子能力潜力指数亿欧智库:AIGC商业潜力边界模型2030年中国AIGC市场规模将接近万亿01-导览02-导览03-导览04-导览0.510.690.761.171.87代码视频音频图像文本0.160.180.200.220.25知识图谱AIGS合成数据虚拟人聊天机器人认知谬误边界基础设施边界技术可行性边界经济价值边界2亿欧智库:AIGC原子能力商业潜力评估模型规
4、模潜力利润潜力泛化与通用场景专业场景基础原子能力多模态原子能力目录C O N T E N T SAIGC概述1.1人工智能概念梳理1.2生成式人工智能因素分析1.3中外人工智能对比1.4AIGC原子能力变化01AIGC生态底座价值链分析2.1 AIGC生态底座价值拆解2.2 算力价值分析2.3 数据价值分析2.4 算法价值分析2.5 AIGC生态服务商总结2.6 大模型生态底座产业图谱02AIGC原子能力商业潜力分析3.1 AIGC原子能力覆盖行业梳理3.2 AIGC基础模态原子能力分析3.3 AIGC多模态原子能力分析3.4 AIGC原子能力商业潜力评估总结3.5 原子能力产业图谱3.6 优
5、秀企业案例03AIGC商业潜力规模预判4.1 AIGC商业潜力边界模型4.2 边界突破趋势4.3 AIGC未来商业潜力规模预测04目录C O N T E N T SAIGC概述1.1人工智能概念梳理1.2生成式人工智能因素分析1.3中外人工智能对比1.4AIGC原子能力变化01AIGC生态底座价值链分析2.1 AIGC生态底座价值拆解2.2 算力价值分析2.3 数据价值分析2.4 算法价值分析2.5 AIGC生态服务商总结2.6 大模型生态底座产业图谱02AIGC原子能力商业潜力分析3.1 AIGC原子能力覆盖行业梳理3.2 AIGC基础模态原子能力分析3.3 AIGC多模态原子能力分析3.4
6、 AIGC原子能力商业潜力评估总结3.5 原子能力产业图谱3.6 优秀企业案例03AIGC商业潜力规模预判4.1 AIGC商业潜力边界模型4.2 边界突破趋势4.3 AIGC未来商业潜力规模预测045资料来源:卡内基梅隆大学、朱松纯浅谈人工智能:现状、任务、架构与统一、公开资料、亿欧智库整理AI跨入3.0+深度加强学习范式,利用奖惩模型强化生成能力u AIGC(AI Generated Content)是基于GAN、预训练大模型、多模态技术融合的产物,通过已有的数据寻找规律,并通过泛化能力形成相关内容。从商业角度看,AIGC是一种赋能技术,通过高质量、高自由度、低门槛的生成方式为内容相关场景及
7、生产者进行服务。u 早期决策式AI依赖逻辑判断的纯粹性,万物都能完美观察、任何测量不存在误差的前提不符合真实世界的“不确定性”;概率范式基于经验主义与理性主义一定程度上解决了“不确定性”;深度加强学习可以利用合理的数据丰度与奖惩模型达到类人类智能的水平,实现高质量内容与内容创作自动化;通用型AI具备泛人类智能,可以像人类一样执行各种任务。自迭代能力伦理道德协作能力执行能力感知能力学习能力决策能力认知能力1.0 逻辑范式2.0 概率范式3.0 深度学习范式3.0+深度强化学习范式4.0?范式AI综合能力AI范式决策式AI生成式AI通用型AIAI在早期工作在于关注逻辑、自动定理证明和操纵各种符号,
8、该类AI理解基础的物理知识,具备一定的逻辑能力,通过分析数据和信息,帮助使用者更好的做出判断与决策。但基于逻辑的AI缺乏感知能力,对真实世界普遍存在的“不确定性”较难处理。概率与统计可以初步解决“不确定性”,但是概率范式需要经验主义先于理性主义进行填充。以Bayes模型为例,需要经验主义者先设定先验数据。以数据为中心,深层次的网络堆叠为架构,样本数据及数据种类的丰富,训练的模型泛化能力就越强,效果越好。同时深度学习训练的AI已经可以很好的执行任务。不过,强化学习的效果却不一定受到数据丰度的影响。强化学习遵循Markov原则,只要奖惩设计合理就能实现不错的效果。Markov奖惩模型:智能体环境奖
展开阅读全文
链接地址:https://wenku.chochina.com/doc/135511.html